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Between 1976 and 1979, the isolation and characterization of 
a series of undecose (Cn) nucleoside antibiotics from Strepto-
myces saganonensis, named collectively as the herbicidins, was 
described.1-3 The glycosyl component of the herbicidins is based 
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on the unusual furo-pyrano-pyran skeleton, and while all members 
of this class incorporate an adenine unit, glycosyl substitution 
patterns do vary (as illustrated by herbicidin B (la) and herbicidin 
G (Ib)). Recently a closely related structure, aureonuclemycin 
(2), was reported, also from a Streptomyces culture.4 The 
herbicidins exhibit herbicidal and antialgal activity, and herbi
cidins A and B (la), as well as aureonuclemycin (2), are efficient 
inhibitors oi Xanthomanas oryzae, a bacterium that causes leaf 
blight infection in rice crops. 1^4,5 

The herbicidins encompass a number of other interesting 
structural features. The C-ring substituents all occupy an axial 
orientation, and the B/C ring junction is held as an internal 
hemiacetal (at C-7) with a C-glycosyl linkage between C-5 and 
C-6. Assembling this class of natural products represents a 
significant challenge within carbohydrate chemistry, and we now 
describe in this report the first synthesis of the Cn-glycosyl core 
of the herbicidins.6 The strategy that has been employed relies 
on the use of a carbohydrate-based ketone as a preformed 
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heterocyclic unit displaying both the nucleophilic character (as 
an enolate) required for constructing the C-5/C-6 bond and the 
carbonyl functionality necessary to establish the hemiacetal at 
C-7. The relationship between these two features was central to 
our planning, but the successful implementation of this strategy 
relied on regiospecific generation of the requisite heterocyclic-
based enolate. Such processes are, however, subject to quite rigid 
stereoelectronic considerations,7 and enolization of both simple 
and more complex tetrahydropyran-3-ones takes place prefer
entially away from the ring-constrained heteroatom.8,9 While 
solutions to this regiochemical problem have been examined,10 

our approach to the synthesis of the herbicidin glycoside (Scheme 
I) has focused on the use of a bicyclic constraint to enforce 
enolization in the sense required. 

The l,5:3,6-dianhydrohexulose derivative 3, available in two 
steps (60% overall yield)11 from l,5:3,6-dianhydro-D-mannitol,12 

fulfils these requirements, and while there are a number of options 
available in terms of the oxidation level within the bridge (which 
corresponds to C-11 of the herbicidins), ether 3 is both the most 
accessible and synthetically useful variant currently available. 
Base-induced condensation of 3 with the D-glucose-derived 
aldehyde 413 took place rapidly to give enone 5 in 60% yield as 
a single isomer (alkene geometry unknown). The stereochemistry 
at C-6 of the C-5/C-6 C-glycosyl bond was then set by face-
selective hydrogenation of the enone and concurrent O-deben-
zylation occurred to provide directly hemiacetal 6 in 60% yield.14 

The structure of this key intermediate, which incorporates the 
furo-pyranc—pyran core of the herbicidins, was confirmed by an 
X-ray crystallographic analysis. 

The diol function of 6 was then protected15 to provide the 
corresponding cyclic carbonate 7 prior to oxidation and cleavage 
of the ether bridge. This oxidation step proved to be problematic, 
and a series of otherwise well-established and selective methods16-20 

for discriminating between -CH2-O and >CH-0 failed to achieve 
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reaction at C-11 of 7. However, free radical bromination21 was 
both efficient and regioselective, providing the a-bromoether 8 
in 65% yield. Methoxide-induced cleavage of the carbonate 
moiety followed by Ag(I)-mediated hydrolysis of the resulting 
a-bromoether gave aldehyde 9 which was used without further 
purification.22 Selective oxidation24 of the aldehyde function of 
9 gave methyl ester 10 in 50% overall yield from a-bromoether 
8, and the structure of this intermediate was also established by 
an X-ray crystallographic analysis. Acetonide hydrolysis, under 
acidic conditions, completed the synthesis of the herbicidin 
glycoside U, which was obtained as a 1:1.5 mixture of a and 0 
anomers at C-I. 

The structural assignments of acetonide 10 and the deprotected 
glycoside ll2 5 are also consistent with 1H NMR data reported 
for herbicidin B (la)1-2andaureonuclemycin (2) ,* but the structure 
of acetonide 10 illustrates several interesting features. The 
distortion of the C-ring, due to the presence of adjacent axial 
substituents, is evident26 and further details are available (see 
supplementary material). 

In summary, we have described a direct and efficient synthesis 
of the undecose skeleton of the herbicidins using a carbohydrate-
based ketone enolate as a preformed heterocyclic building block. 
Other structurally-related carbohydrate units are also now 
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available and the more general application of this methodology 
to the construction of a wider range of C-glycosides is underway. 
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